Inequality involving triangles

https://www.linkedin.com/groups/8313943/8313943-6386243001064189956
In triangle $A B C$, if L, M, N are midpoints of $A B, A C, B C$, and H is orthogonal center of triangle $A B C$. Prove that

$$
L H^{2}+M H^{2}+N H^{2} \leq(1 / 4)\left(A B^{2}+A C^{2}+B C^{2}\right) .
$$

Solution by Arkady Alt, San Jose, California, USA.

We will prove that inequality of the problem holds if $\triangle A B C$ is non-obtuse triangle. If $\triangle A B C$ is right triangle (let $\angle A=90^{\circ}$) then orthocenter H coincide with A and $H L=A L=R=a / 2, H N=c / 2, H M=b / 2$ and, therefore,
$L H^{2}+M H^{2}+N H^{2}=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)=(1 / 4)\left(A B^{2}+A C^{2}+B C^{2}\right)$

Let $\triangle A B C$ is an acute triangle.

Since* $H B=2 R \cos B, B L=a / 2=R \sin A$ and $\angle H B L=90^{\circ}-C$ then $\cos \angle H B L=\sin C$ and
by Cosine Theorem we obtain $L H^{2}=H B^{2}+L B^{2}-2 H B \cdot L B \sin C=$
$4 R^{2} \cos ^{2} B+R^{2} \sin ^{2} A-4 R^{2} \sin A \cos B \sin C=R^{2}\left(4 \cos ^{2} B+\sin ^{2} A-4 \sin A \cos B \sin C\right)=$ $R^{2}\left(\sin ^{2} A-4 \cos B(\sin A \sin C-\cos B)\right)$. Noting that $\sin A \sin C-\cos B=$
$\sin A \sin C+\cos (A+C)=\cos A \cos C$ we obtain $L H^{2}=R^{2}\left(\sin ^{2} A-4 \cos A \cos B \cos C\right)$.
Therefore, $L H^{2}+M H^{2}+N H^{2}=R^{2} \sum\left(\sin ^{2} A-4 \cos A \cos B \cos C\right)=$
$R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C-12 \cos A \cos B \cos C\right)$ and original inequality can be
equivalently rewritten as
$R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C-12 \cos A \cos B \cos C\right) \leq R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right) \Leftrightarrow$ $0 \leq \cos A \cos B \cos C$.

* $\triangle K E B$ is similar to $\triangle A C B$ with coefficient of homothety $|\cos B|$ and $B H$ is diameter of the circumcircle of $\triangle K E B$.

